

Influence of Mineral Precipitation and Aquatic Vegetation on Phosphorus Removal in Canal Water from the **Everglades Agricultural** Area of Southern Florida

Jennifer Cooper, Anne Sexton, Timothy Lang, and Samira Daroub

University of Florida – Everglades Research and Education Center

Study Area

The Everglades Agricultural Area

- 220,000 ha of organic soils
- Sugarcane, corn, rice, vegetables
- Flat topography
- Former sawgrass marsh drained in early 1900s for agriculture and development

The Soil

- Organic soils up to 80% organic matter
- Shallow soil
- Actively subsiding
- Limestone bedrock
- High pH

Impact on the Everglades

- P enrichment
- Legacy P in Lake
 Okeechobee
- Sawgrass → Cattail dominant
- Low water flow
- Altered salinity gradients
- Changes to ecological habitats
- Everglades Forever Act 1994

Potential Impact of Floating Aquatic Vegetation on Mineral P precipitation?

No Suppression

Suppression of FAV

Background

Light weight/labile P-sediments

Denser/recalcitrant P-precipitates

Justification

- Alkaline pH in the EAA
- Ca, Mg precipitate with P at high pH
- Fe, Al, and Mn precipitate with P at lower PH
- Fe and Mn are redox active and may become available under reduced conditions

The Experiment

- 30 drums (each treatment replicated 3x)
- Mineral: Ca, Mg, Fe, Al, Mn
- Floating aquatic vegetation: Yes or no

Bi-weekly addition of canal water

Output Phosphorus Load

Influence of Floating Aquatic Vegetation

Correlations with pH and ORP

Mineral	Са		Mg		Al		Mn		Fe	
FAV	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Correlations with output					t soluble reactive pl		osphorus			
рН									Negative	
ORP	Negative	Negative		Negative					Negative	
Correlations with ou					tput total	phosphoru	s mass			
рН			Negative							
ORP								Positive		
Correlations with p					ercentage total P rei		noval			
рН				Positive		Negative				
ORP								Negative		

Calcium/Magnesium/Iron:AHigh total P removal at high pH and high ORPN

<u>Aluminum</u>: high total P removal at low pH Manganese: high total P removal at low ORP

Mass Flux of Phosphorus (preliminary)

Conclusions

- Manganese and aluminum provided the lowest output total P mass
 - Manganese had high TP removal at low ORP
 - Aluminum had high TP removal at low pH
- The presence of floating aquatic vegetation lowered pH, increased ORP
- Sediments are the largest sink/source of TP